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Abstract

Several decades ago, when working in the field of magnetism, we had to use a balance the
sensitivity of which was limited only by Brownian motion, This balance was a very slow one
and to calculate the moment of force measored by it we used its equation of motion,
T=Jo+ko+Cer, where we measured the values of all the guantities present on the right-hand
side of this equation. At the 21st Conference on Vacuum Microbalance Techniques in Dijon,
we suggested that, with the help of a computer, this procedure could also be made applicable
to the handling of fast balances. The present paper contributes to this topic by presenting a
computer simulation of such a fast balance.
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Some thirty years ago, we worked with a balance which had such a high sen-
sitivity that its accuracy was limited only by the Brownian motion [1, 2]. This
balance was very slow: the oscillation frequency @ was very small and the re-
laxation time T was very large. To allow measuring times of a few seconds, we
used Eq. (1) of Table 1. We measured the deflection angie ¢ as a function of time
and calculated o(7) and (7). The values of the moment of rotational inertia J, the
damping constant £ and the torsion constant C were known and so we could de-~
duce the moment of force 7{(z) as a function of time from Eq. (1), where 7{(7) is the
sum of the torque to be measured and the compensating torque.

In another paper in this volume [3], we discussed the possibility of applying
this measurement procedure to beam microbalances in order to reduce the mea-
suring time in that case to only a small fraction of the oscillating time. This pro-
cedure, however, involves uncertainties, as we discussed in that paper.

For our very slow balance mentioned above, we reduced such uncertainties by
application of an iteration method. This iteration involved the reduction of the
balance deviation from the equilibrium position. To minimize the time interval
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necessary for this reduction, for the compensating torque we used two opposite
pulses with a short interval between them. It may be expected that such an itera-
tion method should also be applicable for faster beam balances.

We studied this by means of the computer simulation depicted in Table 1. The
data used there are taken from a Gast vacuum microbalance with 2.5 g maximum
capacity, which is used at present by one of the authors for measuring gas adsorp-
tion [4]. In Table 1, the equations and parameters on the left-hand side describe
the working of the balance, and those on the right-hand side its automation. The
motion of the balance is expressed by Eq. (2). Here, the amplitude « and phase
angle ¢ can be chosen arbitrarily, and the moment of torque 7 is assumed to be
independent of time. The relation between the parameters of Eq. (2) and those of
Eq. (1) are expressed by Eqs (3) and (4), in which ® denotes the angular fre-
quency and 7 the relaxation time. Equations (5), (6), (7) and (9) give the values of
the different parameters. It is the aim of the procedure to find the value of 7 with
the calculation on the right-hand side of the table. We choose the times for mea-
suring the value of ¢. by means of Eq. (8). We presume the measurements of o to
be free from error.

The values of ¢ at four times are given in Eq. (16). These values from the bal-
ance are the input of the automation facility on the right-hand side of Table 1. The
automation facility uses Eqs (14) and (15) to give approximations of the values
of au(¢) and o). Inserting Eqs (16) and (17) into Eq. (1) results in an approxima-
tion T(#2) of the moment of force to be determined: Eq. (18).
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Fig. 1 Weighing procedure. For clearer demonstration, different scales are used on the verti-
ca! axis. The encircled numbers refer to the respective equations in Table 1
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Fig. 2 The two pulses of the compensating forque. See line 19 in Table 1
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Table 1 Arithmetic instruction 20-6-97. On the left-hand side, the working of the balance is

(2)

3.4

(5.6)
(7.8)
(9

(12)
{13)

(16)

(20)

(21

(22)

23)

(26)

MASSEN ct al.: MASS DETERMINATION

presented and on the right-hand side the automation.
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The reason why Eq. (18) deviates from Eq. (10), which represents the real
value of 7, is that we used the approximate equations (14) and (15). Measure-
ment inaccuracies are ignored in this treatment.

The next step in the iteration procedure is that at time ¢, we apply two short
pulses to the compensating torque, and so to 7(¢) (Fig. 2). These pulses have
different signs. The value of |7(df) and the distances in time between the two
pulses are chosen such that, after the two pulses, the angle o equals the approxi-
mated equilibrium angle 7(r;)/C and that cits) equals zero. The difference be-
tween 1, and 74 causes an extra error besides the error caused by the approxima-
tions (14) and (15). Instead of o(#), we shall use the symbol B(z) for the deflection
after the two pulses, so for r>14 the balance will satisfy Eqs (21) and (22).

We repeat the measuring procedure at times s, fs and #; and, through calcula-
tion of the values of the derivatives B and [ of Eq. (24), we get the second esti-
mate of the moment of force to be determined by Eqs (25), (26). We see that sub-
sequent estimates 7(#2) and T(ts) indeed converge towards the value 7 of Eq. (11).
The time necessary for the complete measurement with two estimates involved
can be taken to be t-—£,=0.6 s according to Eq. (8); this is an order of magnitude
smaller than the measurement time with a classical balance governed by Eq. (9).

The experience of the authors is limited to balances which satisfy Eq. (1). For
types of balances not satisfying Eq. (1), the iteration method might be questionable.
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